CHROMSYMP. 921

ITERATIVE METHOD FOR THE CALCULATION OF THE GAS HOLD-UP TIME ON THE BASIS OF NON-ADJUSTED RETENTION TIMES OF CON-SECUTIVE HOMOLOGUES IN GAS CHROMATOGRAPHY

B. WROŃSKI*

Chromatography Laboratory, Polytechnic School of Białystok, ul. Zambrowska 16, P-16-026 Białystok (Poland)

L. M. SZCZEPANIAK

Institute of Chemistry, University of Warsaw, Białystok Branch, Białystok (Poland) and

Z. WITKIEWICZ

Institute of Chemistry, Military Technical Academy, 01-489 Warsaw 49 (Poland)

SUMMARY

This paper presents an iterative method for the calculation of the gas hold-up time (t_M) on the basis of non-adjusted retention times of consecutive homologues. The values of t_M were determined by an iterative algorithm. A comparison of the t_M values, calculated by the iterative method and other methods for homologues of *n*-alkanes and fatty acid methyl esters, was made.

INTRODUCTION

Much work has been done on obtaining an accurate estimate of the gas hold-up time (t_M) in gas chromatography (GC), which has considerable practical and theoretical significances. Gas hold-up times can be determined by experimental and mathematical methods.

This paper introduces a new iterative method (IM) for the determination of $t_{\rm M}$, which assumes a linear relationship between the logarithm of the adjusted retention time and the number of carbon atoms. When the IM is repeated p times, the $t_{\rm M}$ value is approximately constant. Other mathematical methods for determination of the $t_{\rm M}$ value have been described by other authors¹⁻¹⁵.

EXPERIMENTAL

Columns and packings

Anisotropic and isotropic stationary phases were used. The first group includes two nematic liquid-crystalline stationary phases: 4-nitrobenzoate-4-hydroxy-4-ethylazoxybenzene (I) and 4-methylbenzoate-4-hydroxy-4-ethylazobenzene (II). The characteristics of these liquid-crystalline stationary phases were described earlier¹⁶. Squalane was used as the isotropic stationary phase. The column packings were precoated with 6% (w/w) of each of the liquid crystals and 20% (w/w) of squalane on Gas-Chrom Q, 80–100 mesh (Applied Science, State College, PA, U.S.A.) as the support. The supports with the deposited anisotropic and isotropic stationary phases were packed into glass columns (3.6 m \times 2 mm I.D.). All glass columns were treated with a solution of dimethyldichlorosilane in toluene before packing¹⁷.

Chromatographic procedure

A Varian Model 2100 gas chromatograph (Varian, Palo Alto, CA, U.S.A.) equipped with a flame-ionization detector was used, with argon as the carrier gas at different flow-rates for each column. The flow-rates chosen were somewhat greater than required for the minimum height equivalent to a theoretical plate (HETP). The temperatures of the columns, injector, and detector were different for every stationary phase. The applicable flow-rates and temperatures are given in Table I.

TABLE I

SEPARATION CONDITIONS

Column No	Flow-rate	Temperature	(K)					
	(1001/10001)	Column	Detector	Injector				
 I	15	413	443	443				
п	13	433	443	443				
III	20	373	383	383				

Mixtures of *n*-alkanes and fatty acid methyl esters (FAME), were dissolved in diethyl ether at a concentration of *ca*. 10 μ g/ml. Diethyl ether solutions (0.2 μ l) of the compounds were injected with a 1- μ l microsyringe (SGE, Ringwood, Australia), supplied by Pierce (Oud-Beijerland, Holland).

Retention times were measured with an electronic integrator (Varian CDS 111) with an accuracy of ± 0.01 min.

CALCULATIONS

The IM assumes that

 $\log(t_{\mathbf{R}_i} - t_{\mathbf{M}}) = an_i + b$

where t_{R_i} is the non-adjusted retention time of the homologue *i*, t_M is the gas hold-up time or the retention time of a non-retarded substance, *a* is the slope, *b* is the intercept and n_i is the number of carbons in a molecule of *i*.

For the mathematical determination of the values of t_M , a, and b, it is necessary to work out a system of k equations:

$$\log(t_{\rm R}, -t_{\rm M}) = an_i + b$$
 for $i = 1, 2, ..., k$ (2)

(1)

(**n**)

At the beginning of this algorithm it will be supposed that $t_{\rm M} = t_{\rm M_{(0)}} = 0$, where $t_{\rm M_{(0)}}$ is the $t_{\rm M}$ value after p iterative steps, for p = 0. The successive natural numbers in brackets are iterative steps and the system of equations is solved by:

$$\log t_{\mathbf{R}_i} = a_{(0)}n_i + b_{(0)} \quad \text{for } i = 1, 2, ..., k$$
(3)

for $a_{(0)}$ and $b_{(0)}$. The values of the gas hold-up times for individual homologues and the arithmetic mean are calculated from

$$t_{\mathbf{M}_i(\mathbf{0})} = t_{\mathbf{R}_i} - 10^{a_{(0)}n_i + b_{(0)}}$$
(4)

and

$$\overline{t_{M(1)}} = \frac{1}{k} \sum_{i=1}^{i=k} t_{M_i(0)}$$
(5)

where $t_{M_i(0)}$ is the value of the gas hold-up time for the homologue *i*, where log $(t_{R_i} - t_{M_i}) = a_{(0)}n_i + b_{(0)}$; *k*, as in eqn. 2, is the number of homologues; $\overline{t_{M(1)}}$ is the arithmetic mean for all consecutive homologues. The $\overline{t_{M(1)}}$ value is applied in the next iterative step, for p = 1, to solve the following system of *k* equations:

$$\log(t_{\mathbf{R}_i} - t_{\mathbf{M}(1)}) = a_{(1)}n_i + b_{(1)} \quad \text{for } i = 1, 2, ..., k$$
(6)

For $a_{(1)}$ and $b_{(1)}$, the values $t_{M,(1)}$ and $\overline{t_{M(2)}}$ are computed as follows

$$t_{\mathbf{M}(1)} = t_{\mathbf{R}_{i}} - 10^{a_{(1)}n_{i}+b_{(1)}}$$
(7)

and

$$\overline{t_{M(2)}} = \frac{1}{k} \sum_{i=1}^{l=k} t_{M_i(1)}$$
(8)

Finally the equation

$$\log(t_{\mathbf{R}_i} - t_{\mathbf{M}(2)}) = a_{(2)}n_i + b_{(2)} \quad \text{for } i = 1, 2, ..., k$$
(9)

is solved, and the values of $a_{(2)}$, $b_{(2)}$, $\overline{t_{M(3)}}$ are calculated. This algorithm is repeated p times, until $\overline{t_{M(p)}} = t_M = \text{constant}$, when the accuracy of the numerical value t_M is established to 0.01 min.

The calculated values of t_{M} by the IM and other methods were compared for such homologues as *n*-alkanes and FAME esters. Comparable results were obtained. All results were calculated by the computer Odra 1300. The program was written in FORTRAN.

RESULTS AND DISCUSSION

Retention data

The chromatographic data are given in Tables II-IV. For six replicate samples the Nalimov test¹⁸ was used to eliminate doubtful data. Such data were excluded.

TABLE II

RETENTION MEASUREMENTS FOR *n*-ALKANES AND FAME ON THE LIQUID-CRYSTAL-LINE STATIONARY PHASE I

Run	Non-o	adjusted	l retenti	on time <u>s</u>	s for n-c	ulkanes	(min)	Non-a (min)	ıdjusted	retention	time for	FAME
	C ₉	C ₁₀	C11	C12	<i>C</i> ₁₃	C ₁₄	<i>C</i> 15	C _B	<i>C</i> 9	C10	C11	C ₁₂
1	1.84	2.06	2.44	3.05	4.06	5.70	8.33	4.64	6,71	10.15	15.81	24.99
2	1.83	2.06	2.43	3.03	4.03	5.66	8.33	4.63	6.70	10.14	15.78	24.87
3	1.81	2.04	2.42	3.03	4.05	5.71	8.43	4.67*	6.75*	10.18	15.73	24.80
4	1.84	2.06	2.43	3.05	4.05	5.70	8.40	4.63	6.69	10.08	15.60	24.50
5	1.82	2.05	2.42	3.04	4.05	5.71	8.42	4.64	6.67	10.08	15.57	24.54
6	1.81	2.04	2.41	3.03	4.03	5.68	8.38	4.64	6.67	10.03	15.52	24.40

* Results which are performing the Nalimov test for 99%, the other values for 95%.

TABLE III

RETENTION MEASUREMENTS FOR *n*-ALKANES AND FAME ON THE LIQUID-CRYSTAL-LINE STATIONARY PHASE II

Run	Non-e	adjusted	retenti	on time	for n-ai	lkanes (min)	Non-a (min)	ıdjusted	retentio	n time fo	or FAME
	C,	C ₁₀	<i>C</i> 11	<i>C</i> ₁₂	<i>C</i> ₁₃	C14	C ₁₅	C ₈	C,	C10	C11	C ₁₂
1	2.18	2.60	3.29	4.42	6.26	9.25	14.07	5.25	7.61	11.49	17.76	28.00
2	2.19	2.62	3.32	4.45	6.32	9.34	14.19	5,24	7.60	11.50	17.84	28.09
3	2.18	2.61	3.31	4.44	6.28	9.30	14.15	5.25	7.63	11.52	17.79	28.17
4	2.19	2.62	3.31	4.45	6.29	9.29	14.12	5.20*	7.55	11.42	17.68	27.80
5	2.18	2.61	3.29	4.43	6.27	9.26	14.09	5.24	7.59	11.48	17.78	28.00
6	2.16	2.58	3.27	4.41	6.23	9.24	14.06	5.23	7.57	11.44	17.68	27.87

* Results which are performing the Nalimov test for 99%, the other values for 95%.

TABLE IV

RETENTION MEASUREMENTS FOR *n***-ALKANES ON SQUALANE**

Run	Non-adju	Non-adjusted retention time (min)									
	C ₆	<i>C</i> ₇	C ₈	C ₉	C10						
1	4.95	9.95	20.67	43.50	91.78						
2	4.95	9.95	20.70	43.50	92.00						
3	4,94	9.91	20.58	43.39	91.62						
4	4.94	9.00	20.59	43.23	91.36						
5	4.93	9.91	20.56	43.23	91.46						
6	4.94	9.91	20.60	43.27	91.34						

TABLE V

COMPARISON OF THE METHODS FOR DETERMINATION OF THE GAS HOLD-UP TIME VALUES FOR ALKANES ON COLUMN I

	Gas hold-up tim	e (min)						
Run	Peterson–Hirsch	ı method					Grobler–Balizs method	Iterative method
	C9-C11	C10-C12	$C_{11}-C_{13}$	C12-C14	C13-C15	Mean ± S.D.	C ₈ -C ₁₅	C9-C15
1	1.54	1.43	1.51	1.43	1.50	1.48 ± 0.02	1.50	1.49
5	1.45	1.46	1.53	1.44	1.48	1.47 ± 0.02	1.47	1.47
ę	1.46	1.41	1.51	1.40	1.45	1.45 ± 0.02	1.45	1.45
4	1.52	1.51	1.42	1.51	1.46	1.48 ± 0.02	1.50	1.49
5	1.44	1.50	1.43	1.47	1.43	1.45 ± 0.01	1.46	1.42
9	1.43	1.49	1.40	1.49	1.44	1.45 ± 0.02	1.45	1.45
Mean	± S.D.					1.46 ± 0.01	1.47 ± 0.01	1.47 ± 0.01
							Mean squares · 1(1
1							50	04
7							20	20
m							S	50
4							4 0	09
Ś							6	50
ç							6	4
Mean							21	52

CALCULATION OF GAS HOLD-UP TIME

Comparison of methods

Tables V-IX permit a comparison of the methods for the determination of $t_{\rm M}$ values with regard to reproducibility and to satisfying the conditions of the linear relation between $\log(t_{\rm R} - t_{\rm M})/n$ and linearity. The criterion of reproducibility was the standard deviation (S.D.) of the arithmetic mean of $t_{\rm M}$. For the Peterson-Hirsch method¹ the weighted average and the S.D.s of the weighted average were calculated, treating every repetition as a separate series of results. The criterion of linearity was the mean squares representing the deviation of experimental points from the straight line $\log(t_{\rm R} - t_{\rm M}) = an + b$.

TABLE VI

COMPARISON OF THE METHODS FOR DETERMINATION OF THE GAS HOLD-UP TIME VALUES FOR FAME ON COLUMN I

	Gas hold-u	o time (min)				
Run	Peterson-H	lirsch method			Grobler–Balizs method	Iterative method
	C8-C10	C ₈ -C ₁₁	C ₁₀ -C ₁₂	$Mean \pm S.D.$	$C_8 - C_{12}$	$C_8 - C_{12}$
1	1.51	1.38	1.05	1.31 ± 0.14	1.27	1.40
2	1.50	1.25	1.17	1.31 ± 0.10	1.22	1.36
3	1.47	1.20	1.43	1.37 ± 0.08	1.28	1.36
4	1.44	1.29	1.07	1.27 ± 0.11	1.22	1.33
5	1.65	1.08	1.42	1.38 ± 0.17	1.20	1.41
6	1.54	1.37	1.14	1.35 ± 0.12	1.29	1.42
Mean	± \$.D.			1.33 ± 0.05	$1.25~\pm~0.02$	1.38 ± 0.01
					Mean squares .	10-7
1					5	5
2					5	4
3					2	2
4					4	4
5					10	11
6					5-	5
Mear	1				5	5

Tables V-IX show that for *n*-alkanes and for FAME the reproducibility of the $t_{\rm M}$ values is better according to the IM than the reproducibility of the $t_{\rm M}$ values according to the Grobler-Balizs method⁴ and still better than according to the Peterson-Hirsch method. The linearity is better satisfied by the Grobler-Balizs method, than by the IM, but it is necessary to add that in the Grobler-Balizs method $t_{\rm M}$ values to ten decimal places were used, whereas in the IM $t_{\rm M}$ values to two decimal places were used, in accordance with the assumption of this method, that the precision of the calculated $t_{\rm M}$ values is equal to the precision of the measured values $t_{\rm R}$. In spite of this, the differences in linearity are not large.

M
ĒΒ
9
È.

COMPARISON OF THE METHODS FOR DETERMINATION OF THE GAS HOLD-LIP TIME VALUES FOR ALVANES ON COLLIMN II

	THI JO NORINE		N DELENWINA	ION OF THE OF		ALVEN FUN ALA	CANES UN COLO	
	Gas hold-up ti	me (min)						
Run	Peterson-Hirs	ch method					Grobler–Balizs method	Iterative method
	C9-C11	C10-C12	C11-C13	C12-C14	C13-C15	Mean ± S.D.	C9-C14	C3-C15
-	1.53	1.52	1.49	1.48	1.37	1.48 ± 0.03	1.52	1.51
7	1.51	1.48	1.59	1.41	1.34	1.47 ± 0.04	1.51	1.50
e	1.56	1.47	1.51	1.57	1.30	1.48 ± 0.05	1.52	1.51
4	1.48	1.56	1.45	1.53	1.37	1.48 ± 0.03	1.51	1.50
ŝ	1.44	1.60	1.43	1.49	1.41	1.47 ± 0.03	1.50	1.50
6	1.51	1.52	1.36	1.63	1.22	1.45 ± 0.07	1.50	1.49
Mean ₁	= S.D.					1.47 ± 0.02	1.51 ± 0.00	1.50 ± 0.00
							Mean squares . 1	<i>ι</i> -0,
1							6	6
2							ŝ	16
÷							7	7
4							ŝ	16
s.							10	20
9							8	12
Mean							6	12
						and a state of the		

CALCULATION OF GAS HOLD-UP TIME

TABLE VIII

COMPARISON OF THE METHODS FOR DETERMINATION OF THE GAS HOLD-UP TIME VALUES FOR FAME ON COLUMN II

	Gas hold-u	p time (min)					
Run	Peterson–H	lirsch method	· · · ·		Grobler–Balizs method	Iterative method	
	C8-C10	C9-C11	C10-C12	Mean ± S.D.	$C_8 - C_{12}$	$C_{8}-C_{12}$	
1	1.59	1.31	1.59	1.50 ± 0.09	1.49	1.48	
2	1.62	1.37	1.22	1.40 ± 0.12	1.48	1.47	
3	1.50	1.27	1.95	1.57 ± 0.20	1.49	1.48	
4	1.57	1.28	1.27	1.37 ± 0.10	1.43	1.42	
5	1.65	1.31	1.36	1.44 ± 0.11	1.50	1.48	
6	1.65	1.25	1.58	1.49 ± 0.12	1.51	1.49	
Mean	± \$.D.			1.46 ± 0.02	1.48 ± 0.01	1.47 ± 0.01	
_					Mean squares · 1	10-7	
1							
1					1	1	
2					4	4	
3					3	4	
4					3	3	
5					4	4	
6					3	3	
Mean	Ļ				3	3	

TABLE IX

COMPARISON OF THE METHODS FOR DETERMINATION OF THE GAS HOLD-UP TIME VALUES FOR ALKANES ON COLUMN III

	Gas hold	-up time (min)				
Run	Peterson	Hirsch method			Grobler–Balizs method	Iterative method
	$C_{6}-C_{8}$	C7-C9	C8-C10	Mean ± S.D.	$C_6 - C_{10}$	$C_{6}-C_{10}$
1	0.58	0.46	0.19	0.41 ± 0.12	0.53	0.50
2	0.60	0.36	0.47	0.48 ± 0.07	0.53	0.51
3	0.61	0.53	0.11	0.42 ± 0.16	0.57	0.54
4	0.65	0.35	0.45	0.48 ± 0.09	0.56	0.53
5	0.56	0.47	0.45	0.49 ± 0.03	0.53	0.52
6	0.62	0.37	0.37	0.45 ± 0.08	0.55	0.51
Mean	± S.D.			0.46 ± 0.04	0.54 ± 0.01	0.52 ± 0.01
					Mean squares ·	10-7
1					5	4
2					4	3
3					6	4
4					7	5
5					1	1
6					6	5
Mean					5	4

CONCLUSION

It has been established that the IM gives reproducible results for t_M equivalent to the Grobler-Balizs method and more reproducible results than the Peterson-Hirsch method.

The decrease in linearity together with the increase of the chain of homologues and the regular change of t_M values with increasing number of carbons in homologues permits the assumption that the relationship of the logarithm of the adjusted retention times to the number of carbon atoms is only approximately linear, even in theory.

REFERENCES

- 1 M. L. Peterson and J. Hirsch, J. Lipid Res., 1 (1959) 132.
- 2 H. J. Gold, Anal. Chem., 34 (1952) 174.
- 3 M. Haferkamp, in R. E. Kaiser (Editor), Chromatographie in der Gasphase, Teil II, Bibliographisches Institut, Mannheim, 1966, p. 93.
- 4 A. Grobler and G. Balizs, J. Chromatogr. Sci., 12 (1974) 57.
- 5 T. E. Belias, Chromatographia, 8 (1975) 38.
- 6 X. Guardino, J. Albaiges, G. Firpo, R. Rodrigues-Vinais and M. Gassiot, J. Chromatogr., 118 (1976) 13.
- 7 J. K. Haken, M. S. Wainwright and R. J. Smith, J. Chromatogr., 133 (1977) 1.
- 8 J. A. Garcia Dominguez, J. Garcia Munoz, E. Fernandez Sanchez and M. J. Moiera, J. Chromatogr. Sci., 15 (1977) 520.
- 9 W. E. Sharples and F. Vernon, J. Chromatogr., 161 (1978) 83.
- 10 W. K. Al-Thamir, J. H. Purneli and C. A. Wellington, J. Chromatogr., 174 (1979) 191.
- 11 M. S. Wainwright, J. K. Haken and D. Srisukh, J. Chromatogr., 179 (1979) 160.
- 12 M. S. Wainwright and J. K. Haken, J. Chromatogr., 184 (1980) 1.
- 13 A. Toth and E. Zala, J. Chromatogr., 284 (1984) 381.
- 14 M. S. Wainwright, C. S. Nieass, J. K. Haken and R. P. Chaplin, J. Chromatogr., 321 (1985) 287.
- 15 R. J. Smith, J. K. Haken and M. S. Wainwright, J. Chromatogr., 334 (1985) 95.
- 16 Z. Witkiewicz, M. Pietrzyk and R. Dbrowski, J. Chromatogr., 177 (1979) 189.
- 17 Technical Bulletin No. 7, Applied Science Laboratories, Inc., State College, PA, 1977.
- 18 R. E. Kaiser, Chromatographia, 4 (1971) 126.